Early impact of quantum physics on chemistry: George Hevesy's work on rare earth elements and Michael Polanyi's absorption theory

Gabor Pallo Institute of Philosophical Research, Hungarian Academy of Sciences

Content

1. Theoretical chemistry or applied physics

3. The discovery of hafnium

4. Theory of adsorption

5. Conclusions

Theoretical chemistry or applied physics

reductionism

Paul Dirac:

"The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, ad the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble." (1929)

quantum chemistry

- VB theorists:
 - Walter Heitler (1904-1981), Fritz London (1900-1954), John C. Slater (1900-1976), Linus Pauling (1901-1994)
- MO theorists:
 - Friedrich Hund (1896-1997), Robert Mulliken (1896-1986)

The discovery of hafnium

standard history

Encylopeadia Britannica : "Bohr pointed out that the missing element 72 would be expected, from its position in the periodic system, to be similar to zirconium in its properties rather than to the rare earths; this observation led G. de Hevesy and D. Coster in 1922 to examine zirconium ores and to discover the unknown element, which they named hafnium."

reductionism

Karl Popper: "it [the discovery of hafnium] struck us then as the great moment when chemistry had been reduced to atomic theory." (1988)

electron configuration of the atoms

No.	Element	KLMNO P
56	Barium	2818188 2
57	Lanthanum	28181892
58	Cerium	28181992
59	Praseodymium	28182182
60	Neodymium	28182282
61	Promethium	28182382
62	Samarium	28182482
63	Europium	28182582
64	Gadolinium	28182592
65	Terbium	28182782
66	Dysprosium	28182882
67	Holmium	28182982
68	Erbium	2818308 2
69	Thulium	28183182
70	Ytterbium	28183282
71	Lutetium	28183292
72	Hafnium	2 8 18 32 10 2
73	Tantalum	2 8 18 32 11 2

1 1 1.01 3 Li 6.94 11 Na	2 4 Be 9.01 12 Mg	Periodic Table of the Elements 2005										13 5 8 30.41 13 Al	14 6 C 1241 14 Si	15 7 N 15 P	16 8 0 15.99 16 5	17 9 15.00 17 C	18 2 He 400 10 Ne 20.18 18 Ar
12.99	25.11	3	4	5	6 24	7 25	8 26	9 27	10	11 29	12	36.88	31.09	11.17	33.67	15.45 35	38.95
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.26	44.96	47.87	50.94	57.00	54.94	55.85	\$8.93	58.69	63.55	65.41	69.72	72.64	74,82	71.96	79.90	83.85
37	38	39	40	41	42	49	44	45	46	47	48	49	50	51	52	53	54
Rb 85.47	Sr	¥ 88.91	Zr 91.12	Nb	MO 95.94	TC	Ru	Rh	Pd	Ag	Cd	In 114.82	Sn 118.71	Sb	Te	I 126.90	xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	10.00	120.90	DL29 86
CS	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	the	TI	Pb	Bi	Po	At	Rn
132.91	137.33	1942		180.95	103.84	186.11	100.23	100.22	195.06	106.97	200.50	204.36	207.3	208.00	(207)	(210)	(222)
87 Fr	88	89	Rf	Dh	Ca	Dh	He	M+	De	Da							
(223)	Ra	AC	(261)	(263)	Sg	Bh (264)	HS	Mt	DS (281)	Rg							
-			(mark				Arres	- general	- genery								
Molecular Research Institute			58	Dr	Nd	Dm	62 Cm	63	Cd.	Th	66 Du	67	Er.	Tm	Vh	71	
			Se. 140.12	140.91	144.34	Pm (145)	511	EU	Gd	ID	Dy	HO	EF	168.93	173.04	174.97	
			90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
			10	232.84	221.14	238.63	(237)	(244)	(243)	[247]	(247)	(251)	(252)	(157)	(258)	[259]	(262)

Georges Urbain

- Chemist, 1872 1938
- Professor of inroganic chemistry at Sorbonne
- discovered lutetium

Georges de Hevesy

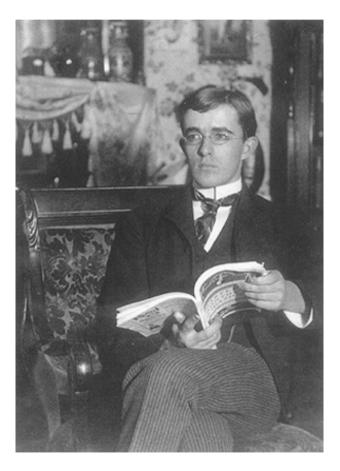
- chemist, 1885 1966
- Copenhagen, Freiburg, Stockholm
- radioactive tracers, hafnium, neutron activation analysis
- Chemistry Nobel Prize, 1944

The theory of adsorption

Michael Polanyi

- Physician, chemist, philosopher, 1891 - 1976
- Budapest, Berlin, Manchester,
- Roentgen crystallography, theory of adsorption, reaction kinetics, philosophy

Polanyi's formula for adsorption potential


$$\epsilon = f(\phi)$$

E is adsorption potential

 $\boldsymbol{\phi}$ is space above the adsorbent

Irving Langmuir

- Physicists, chemist, 1881 -1957
- USA, Research Laboratory of the General Electric Company at Schenectady
- Theory of chemical bond, adsorption, incandescent light bulb, atmospheric science,
- 1932, Chemistry Nobel Prize

Fritz London

- physicist, 1900 1954
- Munich, Zurich, Berlin, Oxford, Paris, USA Duke Univ.
- quantum physics, quantum chemistry, superfluity, superconductivity

Dispersion force

$$E_{AB}^{\rm disp} \approx -\frac{3\alpha^A \alpha^B I_A I_B}{2(I_A + I_B)} R^{-6}$$

A and B two atoms \forall^A and \forall^B are the dipole polarizabilities IA and IB are the first ionization potentials R is the intermolecular distance

dispersion force above the adsorbent

From the two-molecule formula c/r^{6} one can derive the attraction to a surface formula $\epsilon = Nc/6d^{3}$

where d is the perpendicular distance from surface to molecule

Polanyi's letter to a friend

"Whose fate is better, mine or Langmuir's? My theory is absolutely right but not accepted. Langmuir's theory is wrong but very famous... Langmuir is better off."

Polanyi's memory of his thory of adsorption

"my belief in my theory was quite unshaken..." and he went on in this way "I became immune to these objections, but I remained powerless to refute them."

Conclusions

- neither in the case of the discovery of hafnium, nor in adsorption theory were reduced chemistry quantum physics
- quantum physics had a heuristic and interpretative role in chemistry
- the two fields cooperated both intellectually and sociologically