Engineering Entanglement

Quantum Computation, Quantum Communications, and Re-conceptualizing Information

Chen-Pang Yeang Institute for the History and Philosophy of Science and Technology University of Toronto

Conference on the History of Quantum Physics July 2-6, Max Planck Institute for the History of Science, Berlin

The Einstein-Podolsky-Rosen Thought Experiment

Bohmian reformulation of the EPR state: spin up $|0\rangle$ spin down $|1\rangle$

$$\mathsf{EPR} \rangle = \frac{1}{\sqrt{2}} \left(0 |1\rangle - |1\rangle |0\rangle \right)$$

Epistemic Turn: *Why QM is strange?* \Diamond *How to use QM's strange properties?*

Entanglement as *explanandum* \Diamond entanglement as *resource*

Engineering in three senses:

Manipulate simple quantum states of single particles Gauge the fundamental limits of all approaches Seek "killer applications" for extraordinary resource

Turing Machine

Question: How is it possible to implement TM with physical means?

David Deutsch

Deutsch's Quantum Turing Machine

Quantum Parallelism

Richard Jozsa

Deutsch-Jozsa Algorithm

Constant: f(x) = k for $x = 0, 1, 2, ..., 2^{n}-1$

Balanced: f(x) = 0 for half of $x = 0, 1, 2, ..., 2^n$ -1 1 for the other half

Task: determine *f*(.) is constant or balanced

Source: Gulde et al., *Nature*, 412 (2003), 48-50

Peter Shor

Shor's Quantum Fourier Transform

Source: http://www.media.mit.edu/quanta/qasm2circ/

Shor's Quantum Algorithms

Lov Grover

Grover's Quantum Search Algorithm

EPR Pairs and Communications

Two particles are perfectly correlated.

Spontaneous information transmission?

Not possible

But can be used as resource for communications

Charles H. Bennett

Superdense Coding

Quantum Teleportation

Ongoing Research on Quantum Information

Physical Implementation

Optoelectronics Ion Traps Nuclear Magnetic Resonance etc.

Theory

The effects of noise Error Correction Codes Quantum Information Theory etc.