Engineering Entanglement

Quantum Computation, Quantum Communications, and Re-conceptualizing Information

Chen-Pang Yeang
Institute for the History and Philosophy of Science and Technology
University of Toronto

Conference on the History of Quantum Physics
July 2-6, Max Planck Institute for the History of Science, Berlin

The Einstein-Podolsky-Rosen Thought Experiment

Bohmian reformulation of the EPR state: spin up $|0\rangle$ spin down $|1\rangle$

$$
\left.|E P R\rangle=\frac{1}{\sqrt{2}}(0\rangle|1\rangle-|1\rangle|0\rangle\right)
$$

Epistemic Turn: Why QM is strange?
\checkmark How to use QM's strange properties?
Entanglement as explanandum \diamond entanglement as resource

Engineering in three senses:

Manipulate simple quantum states of single particles
Gauge the fundamental limits of all approaches
Seek "killer applications" for extraordinary resource

Turing Machine

Question: How is it possible to implement TM with physical means?

David Deutsch

Deutsch's Quantum Turing Machine

Quantum Parallelism

$$
\begin{aligned}
& \frac{1}{\sqrt{N}}(|0\rangle+|1\rangle+\ldots+|N-1\rangle) \\
&|0\rangle \longrightarrow \begin{array}{ll}
x & \\
U_{f} & y \oplus f(x)
\end{array} \\
& \\
& \frac{1}{\sqrt{N}}(|0, f(0)\rangle+|1, f(1)\rangle+\ldots+|N-1, f(N-1)\rangle)
\end{aligned}
$$

Richard Jozsa

Deutsch-Jozsa Algorithm

Constant: $f(x)=k$ for $x=0,1,2, \ldots, 2^{n-1}$
Balanced: $f(x)=0$ for half of $x=0,1,2, \ldots, 2^{n}-1$
1 for the other half
Task: determine $f($.$) is constant or balanced$

Source: Gulde et al., Nature, 412 (2003), 48-50

Shor's Quantum Fourier Transform

Source: http://www.media.mit.edu/quanta/qasm2circ/

Shor's Quantum Algorithms

Grover's Quantum Search Algorithm

Space of wanted statês

$$
\begin{aligned}
& G|\psi\rangle \\
& |\psi\rangle
\end{aligned}
$$

Space of unwanted states

EPR Pairs and Communications

$$
\begin{array}{rlr}
\mid \text { EPR }\rangle= & \left.\left.\frac{1}{\sqrt{2}}(0\rangle|1\rangle-|1\rangle\right\rangle(0\rangle\right) & \left.\frac{1}{\sqrt{2}}(0\rangle|1\rangle+|1\rangle|0\rangle\right) \\
& \left.\frac{1}{\sqrt{2}}(0\rangle|0\rangle+|1\rangle|1\rangle\right) & \left.\frac{1}{\sqrt{2}}(0\rangle|0\rangle-|1\rangle|1\rangle\right)
\end{array}
$$

Two particles are perfectly correlated.
Spontaneous information transmission?
Not possible
But can be used as resource for communications

Charles H. Bennett

Superdense Coding

Quantum Teleportation

Ongoing Research on Quantum Information

Physical Implementation

Optoelectronics
Ion Traps
Nuclear Magnetic Resonance etc.

Theory
The effects of noise
Error Correction Codes
Quantum Information Theory etc.

