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Appendix 1. 

 

English translation of: Gšppert, M. (1929). † ber  die Wahrscheinlichkeit des 

Zusamenwirkens zweier  L ichtquanten in einem Elementarakt. Die Naturwissenschaften, 

17, 932, (1929).   

Barry R. Masters 

Visiting Scientist, Biological Engineering Division, Massachusetts Institute of Technology, 

Cambridge, MA 02139 

 

 

On The Probability of Two Light Quantum Working Together  in an Elementary Act. 

 

2. H. A. Kramers, W. Heisenberg, Z. Physik 31, 681-708, (1925). [† ber die Streuung von 

Strahlen durch Atome. On the dispersion of radiation by atoms. 

 

 Already from the systematic development of quantum mechanics have Kramers and 

Heisenberg so completely deduced the quantum theoretical dispersion equation that today the 

famous Raman Effect ("Smekal jumps") can be quantitatively calculated. In addition, they 

mentioned another effect that until now has not yet been observed. In the light-quantum language 

it allows the following simple description: 
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 An stimulated atom of energy mnh!  becomes affected from a light quantum of small 

energy mnhh !! <  and thereby jumps to the ground state with a forced [quantum] emission, in 

which the incident frequency !  is just the difference frequency vvv mn !=' . 

 Occasionally the quantum mechanical representation of these things, through the aid of 

the soon to be published book of Born and Jordan in which I have contributed, I have noticed, 

that in the exact disperion theory of Dirac there is also his delivery of the reverse effect. It occurs 

by the following process: An atom in the ground state, is acted upon by two light quantum 

!h and '!h , the sum of which (within the linewidth) equals the excitation threshold [step] of 

the atoms,  mnvvv =+ ' , and through it becomes promoted to an excited state with the energy 

mnh! . Consequently, one has here the working together of two light quanta in an elementary 

act and the probability of such processes can be calculated.  

 Here the two processes are schematically contrasted to the Raman effect. We will 

consider the transition of an atom between a lower state n , and a higher state m.  State k  is 

some other atomic state. The dotted lines denote the behavior of an atom, the upwards pointing 

arrows are absorption, the downwards pointing [arrows] are emitted light-quanta. 

 In the StokesÕ case of the Raman effect (Fig. 1), the emitted light of frequency  

mnvvv ±=' is associated with a virtual oscillator with the moment. 

   ( ) R
mn

R
mn pdP != ""#$2     (1)  

where,  
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( )!"  is the radiation density 

( ) !!" d#  extended over a spectral line 

eö is a unit vector in the direction of the incident [electric] field strength, 

knP  is a matrix element of the electrical moment of the unperturbed atom. In the anti-Stokes 

case (Fig. 2), the symbols nand m are exchanged in formula (2). 

 In case 3, the double emission, there stands in the place of the virtual moments RP  

another D
P  from the same formula (1), only in the place of (2) there is now 
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One notices in that the great similarity of the two cases. The transition probability of the cases 1-

3 is proportional to the light intensity: 

 ( )
2

mn3

34

nm pd2
ch3

64
w !!"#

!#
$%=

'
     (4)     

but in case 4 it is proportional to the square of the light intensity, namely 

 

!  

wmn =
8" 3

h2 #2" $ %m n &%( )' $ %( ) d% pn m
D ö e '

2
      (5) 
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It is noticed that the expression in !  and '! , also eö and 'öe  are symmetrical.  The probabilities 

(4) and (5) have the attribute that the radiation balance is not disturbed [conservation of energy]. 

 The process 3 [Fig. 3] is probably difficult to observe, because the frequency is 

proportional to the number of atoms in the excited state; in case 4 on the contrary, it is 

proportional to the number of atoms in the ground state, whereby nevertheless the quadratic 

dependence of the light density works unfavorably. 

 

Gšttingen, Institute for Theoretical Physics, October 28, 1929,  

Maria Gšppert 

Acknowledgment of the translator 

I thank Katie Lagoni-Masters for checking my translation. 
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Appendix 2. 

English translation of: Gšppert-Mayer, M. (1931). † ber Elementarakte mit zwei 

QuantensprŸngen. Ann. Phys (Leipzig), 9, 273-294, (1931). 

Translated into English by Barry R. Masters 

Visiting Scientist, Department of Biological Engineering, Massachusetts Institute of Technology, 

Cambridge, MA 02139 

 

German:   

† ber Elementarakte mit zwei QuantensprŸngen 

von Maria Gšppert-Mayer  

(Gšttingen Dissertation) 
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[p-273] 

 

Elementary Acts Wi th Two Quantum Jumps 

Maria Gšppert-Mayer  (Gšttingen Dissertation) 

Ann. Phys (Leipzig), 9, 273-294, (1931) 

 

Introduction 

 

 The first part of this work is concerned with two light quanta working together in one 

elementary act. With the help of the Dirac [1] dispersion theory [the variation of refractive index 

with wavelength], the probability of an analogous Raman effect process is calculated, namely, 

the simultaneous emission of two light quanta. It is shown that a probability exists for an excited 

atom to divide its excitation energy into two light quanta, the sum of their energy is equal to the 

excitation energy, but each can be an arbitrary value. If an atom is irradiated with light of a lower 

frequency than the frequency associated with an eigenfrequency in the atom, additionally there 

occurs a stimulated double emission, in which the atom divides the energy into a light quantum 

with the frequency of the irradiated light, and a quantum with the difference frequency. Kramers 

and Heisenberg [2] calculated the probability of this last process in a corresponding manner. 
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[English translation: Van der Waerden, 1967. Sources of Quantum Mechanics, 223-252, New 

York: Dover Publications.] 

 The reverse of this process is also considered, namely the case that two light quanta, 

whose sum of frequencies is equal to the excitation frequency of the atom, work together to 

excite the atom. 

 It is further investigated how an atom responds to colliding particles, when at the same 

time it has the possibility of spontaneously emitting light. Oldenberg [3] experimentally found a 

broadening of the resonance lines of mercury, when he allowed the excited atoms to collide 

many times with slow particles. 

___________ 

1) P. A. M. Dirac, Proc. of R. S. vol. 114, S. 143 [read S. 243, and S. 710, (1927)]*  

*[ Error in text, read P. A. M. Dirac, Proc. of R. S. vol. 114, p. 243, and p. 710, (1927).] 

2) H. A. Kramers and W. Heisenberg, Ztschr. f. Phys. 31, S. 681 (1925). 

3) O. Oldenberg, Ztschr. f. Phys. 51, S. 605, (1928). 

 

[p-274] 

He interprets this with the assumption that a positive or a negative part of the excitation energy 

of the atom can be transferred as kinetic energy to the interacting particles, and the difference 

frequency is radiated. For this process, an equation is derived here that is analogous to the 

Raman effect or double emission. 
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 Finally, in relation to a study by Franck [1], an attempt is made to explain the behavior of 

the intensity of excitation of spectral lines, induced by collision [of atoms] with fast electrons in 

such a double process. 

 Franck discusses the course of the excitation function of a spectrum line; that is the 

intensity [of the line] as a function of the velocity of the colliding electrons. This function is zero 

for low velocities, until the kinetic energy of the electrons becomes equal to the excitation energy 

of the particular spectral line of the original state. The excitation function sharply increases, has a 

maximum at a velocity that corresponds to a potential of a few volts above this critical potential, 

and then decreases towards zero again. This part of the curve is differentially calculated with the 

usual theory of collisions. A curve is obtained that closely represents the effect, especially the 

sharp increase of the function at the critical potential. For high velocities the theoretical curve 

shows a monotonic decrease to zero. However, studies with rapid electrons have shown that the 

intensity increases again, and that electrons with a velocity corresponding to about 100 volts, 

appears to reach a flat [intensity] maximum for all [spectral] lines. This maximum occurs at 

kinetic energies that cause strong ionization, and for which the theoretical value of the direct 

collision excitation as well as for the extrapolation of the experimental excitation function is 

already practically zero. The relative intensities of the individual [spectral] lines are completely 

displaced in relation to the behavior at low velocities; therefore, the excitation process appears to 

be based on a completely different process. Franck remarked that this effect is in many aspects 

similar to recombination luminescence. 

__________ 

1) J. Franck, Ztschr. f. Phys. 47, S. 509, (1928). 
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[p-275] 

 On the other hand Franck also shows that this process could not only be a matter of 

recombination, mainly because a great part of the experiments are performed in such high fields 

that secondary electrons released rapidly attain a velocity that is too high for them to be 

recaptured. Therefore, Franck explained this effect as the recombination of the atom with its own 

electron, a process which can be described as follows with the Bohr hypothesis: an atom's 

electron receives energy from the colliding particles and is thrown in a hyperbolic orbit, that is, a 

higher [energy] orbit than [that associated with] the ionization energy. Before the electron leaves 

the region of influence of the atom, it returns back to the elliptical orbit under the emission of 

light, so that the atom is now in an excited state. 

 Here the question should be discussed how such a process can be described according to 

the representation of quantum mechanics. Obviously we can no longer state that the atom 

recombines before the secondary electron has left the specific region of influence of the atom. 

However, it is reasonable to try to explain this effect by a process, in which simultaneously in an 

elementary act, the atom gains energy from the colliding electrons and emits light, so that it 

remains in a condition of discrete energy, and is now able in a second, independent process, to 

emit a spectral line of the discrete spectrum. Such an explanation contains a strong analogy to the 

Raman effect, which can also be described as the concurrence of two processes in a single 

elementary act. Since such a single act process occurs at the moment when the collision occurs 

with the atom, it would explain all the effects that cannot be explained by recombination 

luminescence. 
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 The calculation shows a probability for such a process, the nature of which will be 

discussed. 

 

 1. The combined action of two light quanta in one elementary act 

 The following calculation is closely associated with the work of P. M. A. Dirac on 

emission, absorption, and dispersion [see reference 1 this paper, and R. H. Dalitz, 1995. The 

Collected Works of P.A.M. Dirac, 1924-1948, Cambridge, Cambridge University Press.]  

 

[p-276] 

 

 Let us consider the interaction of an atom with a [electromagnetic] radiation field. To 

make the number of degrees of freedom countable, think of the radiation contained in a cubical 

box of volume V , which constrains the light waves to the condition of periodic repetition 

[standing-waves]. Later this box will be assumed to be infinitely large. 

 Such a radiation field is equivalent to a system of uncoupled harmonic oscillators. The 

radiation can be decomposed in plane, linear polarized waves; let A be the vector potential, then 

!  

A = Q" A"

"

# = Q" ö e " e
2$ i %" Sx

" x + Sy
" y + Sz

" z( )

"

#  
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in which the components of the vector, !
!" S  are determined in the usual manner by whole 

numbers which depend on the size of the box, and to each possible vector !
!" S  there belong 

two unit vectors !S , perpendicular to each other and to the unit vector !eö .  

 For large cavities, the asymptotic number of the standing waves, of which the frequency 

is between !  and !! "+  is given by equation (1) 

( ) !
!"

!! #=#
3

28

c

V
Z   (1)  

 The Maxwell equations give for the values of !Q  the differential equation of the 

harmonic oscillators. Subjected to quantization the Hamilitonian function of the radiation is: 

!! "
#
$

%
&
' +=

(
((

( )
2
1

nhH    

A state s of the radiation field is described by giving the state of all the oscillators 

( )...... !nns 1= , and the energy difference of two cavity states is: 

! "=
#

###$$ )( '
' nnhh ss  

 The matrix elements of !
Q  are: 

( )1n
V2

hc
Q

2

ss
+= !

!

!

"#
'             for       1'

+= !! nn ,  !! nn ='  (2) 
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ss
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 [p. 277] 

 An atom with a stationary nucleus, a Hamilitonian function [Hamilition operator or 

energy operator] AH , the stationary state n , and the eigenfrequency [resonance frequency] 

'nn!  interacts with the radiation field. Then, the Hamilton function of the total system is: 

'HHHH A ++= !
"

"  

The interaction energy 'H  is given from the function of the electron: 

( ) ( ) 2
2

22

22
A

cm

e
Ap

cm
e

qV
m

p
Hel +++=  

where p  and q  are respectively the momentum and coordinate vector of an atom's electrons, 

V  is the potential energy of the electron in the atom, and A is the vector potential of the 

radiation field at the position of the electron. The two-terms of the interaction energy 

( ) 2

2

2

A
cm2

e
Ap

cm

e
H +='  

can be easily converted to a simpler form. Specifically, if we form the interaction [energy] 

function belonging to elH  as: 
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elHpqL != &  

and express it with the help of 
p

H
q el

!

!
=&  as a function of q  and q&: 

( ) ( ) ( )Aq
c
e

qVq
2
m

qqL 2 &&& !!=,  

then it is equivalent to another interaction [energy] function: 

( ) ( ) !
"
#

$
%
&''=

dt
dA

q
c
e

qVq
2
m

qqL 2&&,  

which is derived from the first by adding the total time differentials ( )Aq
dt
d

. If we form the 

respective Hamilton function elH  from this, then we obtain: 

( ) !
"
#

$
%
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dt

dA
q

c

e
qV

m2

p
H

2

el  

If the wavelength of the light is large in relation to the atom's dimension, then the space variation 

of A within the atom can be neglected, so that 

A
dt
A

dt
dA &=

!
=  

 [p-278] 

After introducing the electric moments [(charge) x (displacement)]   
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!=
r

rqeP  

(the sum ranges over all the atom's electrons), the term for the interaction energy is given as: 

!  

H' = "
1
c

P ú A ( ) 

For which A& takes its value at the points 000 zyx ,, from the atom's mid-point. Since 

!  

1

c
˙ A ( ) 

is equal to the electric field strength E of the radiation, the energy of the interaction is 

simplified under this assumption to the potential energy of the electric moments P, against the 

light field. 

 'H  is the perturbation energy and the eigenfunction of the total system is developed as 

the eigenfunctions of the unperturbed system, 

snsna !=! "     

It is assumed that the unperturbed system at time, 0=t , is in the state 0
n , 0s  then perturbation 

theory yields, for times that are short in relation to the average dwell time [lifetime], probability 

amplitude 
sn

a , in the first approximation is:      
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and in a second approximation,     
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The first of these known equations gives absorption and emission, the second [of these known 

equations] gives the Raman effect and dispersion, and also the effects of simultaneous emission, 

and simultaneous absorption of two light quanta, in which here the details will be investigated. 

 First, in order to calculate the double emission let the atom at time, 

 0=t , be in the excited state 0
n , and let there be only one standing wave in the cavity,  

  

!
"
#$

%
& ++

=
zzSyySxxSi2

eeA
'''

'()
' ö  

[p-279] 

with a frequency !"  which differs from the eigenfrequency of the strongly excited atom , i.e. 

0;1 00 =>> !" nn   for  '; nn!!"# " $$  

On account of the properties of the oscillator matrix !Q  (2) in  

!  

Hn n' s s'
' = ú Q s s'

" Pn n'A
"( )

"

#  
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'
''

'
'' 00 ssnnssnn HH  can only differ from zero, if [state] s procedes from [state] 0s  either by 

the absorption of one light quantum !"  of the absorption frequency ["sent in"], and the emission 

of any other light quantum !" , this gives the Raman effect and dispersion, or by the emission of 

two light quanta. It will then be shown that for the case with a fixed frequency !" , while 

conserving the entire energy in any case only the emission of a specific frequency is possible. In 

order to calculate both cases simultaneously, in the following equation with doubled symbols the 

upper ones represent the Raman effect and the dispersion, and the lower ones represent the 

double emission. 
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)2(
sna  is only then significantly different from zero when !"  is equal to or close to zero in one of 

the three denominators. 
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!""" ####### m+++ 00 nnnnnn
,, ''

 

The regions of the zero value of the first two denominators yield the probabilities for processes 

in which the energy rule is not followed, namely for the transitions of the atom from 0n   to n , 

with respectively absorption or emission of a quantum with the ("sent in") frequency !" , and 

emission of a quantum at the eigenfrequency of the atom. 

[p-280] 

 These transitions do not correspond to real processes; they are based on a particularity of 

the method of variation of constants used here. Specifically, it is assumed that the perturbation 

energy 'H  begins to act at time 0=t , when it is actually continuous. This "turning on" [of the 

purturbation energy] is the cause of the occurrence of the abnormal transitions. 

 However, the location of the zero point in the third denomonator is represents the change 

of the total energy in the process. For such frequencies !"  in the region of !""" ±=
nn0

' , the 

additive terms can be ignored, 
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and we obtain for the matrix elements Q  their value from equation (2). 
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 means that for dispersion and the Raman effect the value is 0, and for double 

emission the value is 1). The probability of the process is given through the sum of 
22

sna )(  over 

all !  for frequency !"  that is close to the frequency '! . Proceeding in the usual way for a large 

cavity, from !
"

 the integral summed over the number of standing waves, 
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one obtains the following equation due to the sharp maximum of the integrand at the positions of 

resonance. 
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[p-281] 

This equation is only meaningful if 0' >! . Double emission is only possible if 0
nn0 >!  and 

the absorbed ["sent in"] frequency is 
nn0!! " < . 

 Assume that not only a single eigenfunction [standing wave] of the cavity is strongly 

excited at the beginning, but also that a spectrum line of infinite width is sent in [absorbed], and 

consider for the case of double emission that the probability of the emission of !"  is not exactly 

in one eigenfunction !
A , but in the narrow frequency range !" , then the above equation is to 

be summed over all the eigenfunctions !A  with frequencies between !  and !! "+ . Using the 

function ( )!"  which defines the average monochromatic radiation density defined as: 

( ) !
"+<<

="
####

$$
$

###% 0nhV                 (6)   

one obtains the probability of the double emission per unit time as: 
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Thus it is demonstrated that in unoccupied [no radiation field] cavity, a probability for a 

spontaneous, simultaneous emission of two light quanta exist, and all frequency divisions are 

possible. If light of frequency !  is sent in [absorbed], a portion of the stimulated emission of 

frequency '!  behaves with regard to its intensity, as if it is a virtual oscillator with the moment  

( ) !! "#$ 00 nnnn
p2P =  
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 with the frequency '!  that is spontaneously emitted. For normal radiation densities, the strength 

of the stimulated double emission is much less than the corresponding spontaneous double 

emission. (The same relations exist between ordinary stimulated and spontaneous emission.) 

This equation (8) is fully similar to that for the Raman effect in which the standard moment is: 
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Since the observed intensities also depend on the number of atoms in the original state, which in 

this case is the excited state, the effect can hardly be observed due to a strong spontaneous 

emission. Maybe we could find it under metastable states, if the spontaneous emission 

probability 
2

nn 0P  is negligible. 

 The inverse process of double absorption [two-photon absorption], in  contrast, is 

proportional to the number of atoms in the ground state. The calculations in this case proceed in 

a similar manner. Only in this case the initial state 0n  of the atom is in the ground state, and 

before the start of the perturbation in the cavity only the light in two narrow spectral ranges of 

average frequencies !  and '!  are present, the average frequency sum is equal to the resonance 

frequency of the atom, 
0nn

!!! =+ ' . The eigenfunction for each spectral range can have the 

same propagation direction s, 's  and the same polarization, eö, 'öe  respectively. 

 From similar considerations as before, the amplitude of the transition probability from 

0n  to n , (3) is only different from zero when the state of the cavity evolves from  s to 0s  

through the absorption of a light quantum !"  in the spectrum range !  and another [light 

quantum] !"  from the spectrum range '! .  For such transitions, neglecting the corresponding 

terms as in (5): 

[p-283] 



Proximity of Theory and Practice, Gšttingen 1920Õs,   Barry R. Masters  QH3   6/2010   23 
 

2

n1nn1n
2
sn

c

QQ
a

0000
!"

!!"" ,,
)( ##

=

&&

 

 ! "
"

#

$

%
%

&

'

(
+

(
)

)(

)ö()ö(

)(

)ö()ö(

''

''''

*

*+

+

+*

,,,, 0

0

0

0

nn

nnnn

nn

nnnn

h

ePeP

h

ePeP
 

 
!
"

!
#

$

!
%

!
&

'

((
(

)
*
+
,

-
.
/ ((

)( 01

2223

222

01

0

0nn

nn

ti2

h
e1

 

!!"" ##
$ 00 nn
V

h2
=  

 ! "
"

#

$

%
%

&

'

(
+

(
)

' '' )(

)'ö()ö(

)(

)ö()ö(
'''

'
'

n nn

nnnn

nn

nnnn

0

0

0

0

h

ePeP

h

ePeP

*+ ,,,,
 

 
!
"

!
#

$

!
%

!
&

'

((
(

)
*
+
,

-
.
/ ((

)( 01

2223

222

01

0

0nn

nn

ti2

h
e1

 

The probability of the process is obtained by the sum of 
22

sna )(  over s that is for large cavities 

through the integration over !"  and !" . By using in (6) the defined function ( )!"  for the 

monochromatic radiation intensity per unit volume we obtain in the ususal way the sharp 

resonance at the point 0nn
!!! "# =+ , 
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where as !p  signifies the vector defined in (8). The integral ranges over the width of one of the 

in-going spectral lines [absorption]. It is shown for ordinary light intensities that the probability 

of the simultaneous absorption is less than that for simultaneous emission. The relation of the 

probabilities of double emission to double absorption is the same as for ordinary emission and 

absorption. The processes will therefore not affect the radiation equilibrium [conservation of 

energy]. 

[p-284] 

 The frequency of this process of simultaneous absorption is increased because it is 

proportional to the number of atoms in the ground state. Conversely, the quadratic dependence 

on light intensity is unfavorable, so high light intensities are required for observation [of the 

effect]. 

 It should be noted that both of the processes discussed, like the Raman effect, act as if the 

two processes, neither of which satisfies the energy rule [energy conservation], take place in one 
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act: the atom with the emission or the absorption of frequency !  goes from the state 0n  to an 

intermediate state '
n , and from there, under emission or absorption of frequency '! , to the final 

state n . 

 All of these processes are compared schematically below, for simplicity, all the 

transitions between two states n  and m, for which 0>mn!  are illustrated. 'n  is any 

intermediate [virtual] state. Figure 1 and 2 show the StokesÕ and the anti-StokesÕ cases of the 

Raman effect, Figure 3 the double absorption [two-photon absorption], and Figure 4 the double 

emission. 

[Figures 1-4] 

 

 2. The working together  of light and collisions [electrons] in one          

elementary act 

 In this part of the work the working together of light and colliding particles, such as 

electrons, with one atom will be considered. 

 The electron waves are enclosed in a cubic box of volume V , with the same condition as 

for the radiation; namely periodic repeated [standing] waves. 

[p-285] 

 In the absence of interaction, the energy of the electrons is only kinetic energy T , and the 

eigenfunctions are plane waves 



Proximity of Theory and Practice, Gšttingen 1920Õs,   Barry R. Masters  QH3   6/2010   26 
 

!  

" # =
1
V

e
2$ i

h
px

# x + py
# y + pz

# z( )
 

in which the components of !p  are determined by integral numbers related to the definite size 

of the box and the number of standing waves, for which the energy !E  between E and 

EE !+ , the moment vector !p  in the frequency range p!"  is given by: 

( ) pp EEm
h

Vm
EEN !! ""="" 2

3
      (10) 

 The interaction of such a field of free electrons and a radiation field with one atom will 

be investigated. The Hamiltonian function of the total system is:  

! +++=
"

" 'HTHHH A  

in which the interaction energy 'H  is separated into two parts: 

UVH +='  

the first term V  is the interaction between the atom and the radiation,  

( )AP
c
1

V &!=  

and the second term  U  is the interaction between the atom [nucleus] and the electron which is 

approximately represented by the Coulomb field. The interaction between the radiation and the 

electron is neglected. 
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 As in the first part [of the paper] the probability amplitudes sna !  are investigated, for 

the case in which initially there is no radiation in the cavity, thus there is only pure emission 

processes. Let there be only one electron with energy 
m2

p
E

2

0

0!=  in the cavity, and initially the 

atom is in the excited or unexcited state 0n . Since V  is independent of the coordinates of the 

electron, and U  is independent of the radiation, the matrix element of 'H  

''''''''' ;;
'

; ssnnsnsnsnsn
UVH !!

""""""
+=  

 [p-286] 

thus to a first approximation, the transition probability is split into two additive terms [no cross 

terms]; that of the light alone, and that of the collision alone. The working together of both can 

only be obtained in the second approximation [perturbation theory]. 

 The probability amplitude in the second approximation, due to the properties of the 

perturbation potential is: 

( ) ( ) ( )
00

2
snss

2
n

2
sn aaa

!!!! "" +=                    (11)   
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In the second approximation, the terms ( )
0

2
sna

!!
"  and ( )

0ss
2

na !"  are the contributions only 

due to collisions and those only due to radiation. For processes in which both light and collisions 

contribute, and for which both !  [ letter k corrected by translator] and s vary, they are zero. 

 The emission probability of light is investigated for the case in which the emission 

frequency !  is not equal to the eigenfrequency of the atom. From the same considerations as in 

the previous paragraphs, ( )2
sna !  is only different from zero for the state !  in which the energy 

rule is approximately followed, that is for which 00 EEhh
nn

!++ "#$$  is small, and for 

such states in which the additive terms  
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can be neglected. Therefore, 
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[p-287] 
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To obtain the probability of the emission of light in a narrow frequency range, !" , with an 

average frequency ! , in the transition of an atom from the state 0n  to the state n , the term 

( )2
sna !  must be multiplied with the number of eigenfunctions in the range !" , that is 

( ) !! "Z , and summed over all ! , which in a large cavity is an integral over ( )dEEN  [see 

equation (10)]. 

 Due to the sharp maximum in the integrand we obtain in the usual manner: 
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This probability is normalized on a density V
1  for the incident electrons. If we consider a 

stream of incident electrons, of current density one, then the result must be multiplied by: 

0
0 2

E
m

V
v
V

=  

Finally, by substituting the values for z and N , the probability for the combined effect is 

obtained. 

[p-288] 
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The result does not depend on the size of the box V , because  

VU
nn 0'0' !!

 is inversely proportional. 
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 Let 0n be an excited state and nbe a lower state of the atom, therefore 00 >
nn

! . It can 

be shown that a transition in an atom from 0n  to n  can emit light of frequencies !  that are 

higher or lower than the exciting frequency 
nn0! . The probability is greater when only small 

amounts of the energy is transferred to the colliding particles, and when the frequency !  is close 

to 
nn0!  There occurs in the above equation in the summation over 'n  other terms in which 

0' nn =  or nn =' . They have the corresponding values: 

)( !!
""

#
nn

nnnn

0

0000

h

UP
  for  0' nn =  

)( !!
""

+0

00

nn

nnnn

h

UP
  for nn ='  

These two terms give a resonance for 
nn0!! = . When !  is close to 

nn0!  they will dominate 

all other terms. In the corresponding equations for the Raman effect, and the double emission 

effect, respectively, this resonance does not occur. This result agrees with the experimental 

results of Oldenberg. 

 For the excitation luminescence effect discussed in the introduction, the initial conditions 

are as before: the atom at the start of the process is in an initial state 0n , which can be the 

ground state, but the kinetic energy of the colliding electron 
m2

p
E

2

0

0!
=  is now much greater 

than the ionization energy of the atom. 
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 The transition probability of the atoms from a state n  of discrete 

[p.-289] 

spectrums is analyzed, and it will be shown that there is a possibility that the atom arrives at this 

state by way of a detour through a continuous spectrum. 

 In order to calculate the probability for such processes, is it necessary to return to 

equation (11). The summation over 'n  implies the integral 'dE  is over a continuous spectrum. 

The assumptions made that lead from equation 11 to equation 12 are here not justified since the 

denominator of some of the dropped terms can be zero, even when the energy rule is followed. 

But due to the initial conditions a few further simplifications can be made. 

 Since 0n  represents the ground state of the atoms and 0s  is the unoccupied cavity, 

00nn
>!  and 00ss

>= !"" . The denominator !"" +0'nn
 of the first summation in (11) is 

always large. Conversely, for the second summation, all three denominators can at the same time 

be zero. When we only look at those processes, the last term dominates over the first term by far, 

and reflects by itself the main aspects of the effect. 

 Therefore, mainly 
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Through rearrangement of terms the equation yields: 
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Here the summation is over 'n  respectively, and integration over 'dE , those terms are mainly 

considered for which the denominator becomes small. 

[p-290] 

If the resonances are situated in the continuum, then the integrand for  

!" EE
nE

#= 00' , !"" =
nE'  shows a strong maximum and becomes small at larger distances 

[from maximum]. The product 00nEEn
UP

!!''  is slowly varying so it can be taken as a 

constant, within the range, equal in value to that at the resonance point, and the integral can be 

approximately evaluated. For the discrete eigenfunctions an error is caused when discrete values 

of 00nnnn
UP

!!'' ,  in 'n are interpolated from the continuous function 'E  in which the 

summation is replaced by an integration. It will be shown later that for the special case of high 
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speed colliding particles that this error is small, since the energy changes 
nEnE

hh 0 ', !!  which 

occur have resonance points which are in the continuum. 

 Thus the approximation is made: 
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[The last term in the equation above was corrected by the translator] 

The atomic states 1E , 2E  are the points of resonance, and depend on !  and s  so: 

0EEh 0nE 01 =!+ "# ,  02En
=+ !""      (14) 
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The transition probability of atom from state 0n  to state n  is ( ) 22
sna !  summed over !  and 

s. First, the sum is made over ! , which for a large cavity is an integration 

over ( ) !! "ddEEN  (see equation 10). Again only the domain is considered in which the 

denominator, 

[p.-291] 

which represents the conservation of the total energy of the process is small, since for this point 

the atomic states 1E  and 2E  are equal, EEE == 21 , we obtain: 

( ) 2

EnnE0

322
sn APhEN

V
h2

a 0
!!

"
" #

#$
)( %=&    (15) 
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h
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dU
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nE 00 !!" #
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% &&&
     

Here the state E and the energy given up by the colliding electrons, 0EE !" , shown in (14) 

depends on s, !"  thus: 

0EEhh 0nn 0 =!++ "#$$ ,  0nE0 hEE !" =# ,    nE!! " =   (16)  

Equation (15) gives the probability for an atomic transition to the state n  with emission of a 

light quantum of frequency nE!! " =  to the standing wave !A  within the cavity. The 

equations (16) show that this process acts as if it is two separate processes, each one satisfying 

the energy rule, takes place in a single action, specifically, the ionization of an atom through 
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collision, in which the electron give up the energy 0nE
h!  and then there is recombination with 

emitted radiation [out going radiation] of frequency nE!! " = . 

 To obtain the total transition probability of the atom in the state, equation (15) must be 

summed over all s or over all ! , which is as in the first paragraph, an integration over 

( ) !! "" dZ . Referring to this 

 probability, instead of to a density V
1  of the incident electrons, to a current density of one 

electron per second across a cross section perpendicular to the direction of propagation of the 

electrons, we must multiply by  

0Em2

mV
, then for the transition probability of atoms from state  

0n  to n : 
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 [p.-292] 

The matrix elements in the equation are expressed by the emission coefficients: 

2
En3

3
nE

4

En P
hc3

64
A

!"
=  

and through the theoretical value of the ionization probability through collision [compare with 

Born1] which in this relation is: 

!!!
"

#$
p

2

nE
2

0

nE
4

22

nE
dUV

E

h
1

h

m4
S 00

0

0 %&=  

we obtain the final equation: 

dESA
4
h

w 00 nEEnnn !=          (17)  

 Subsequently, the previous method of interpolation of discrete matrix elements through a 

continuous function of energy is justified. Since the collision excitation probability is low for 

high velocities of colliding electrons, and is only essential for transitions in the continuum which 

follows from consideration of the Born equations. Therefore, in the final equation it is sufficient 

that the integral is made only over the continuum.  

 This process of collision ionization and simultaneous recombination is an analogue to the 

process described by Franck which was discussed in the introduction [to this paper]. This 

process, [and the calculation relates to this case], is really a unified act, and not two independent 

processes, which follows from the proportionality of the frequency with t . Since the frequency 
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of succession for two independent processes-such as excitation by collision, and later light 

emission after a delay of 810! sec-must always be proportional to 2t  for time intervals less that 

810! sec, and the calculation is valid for these cases. 

 This equation yields the transition probability from state n  through collision with high 

velocity electrons. The atom can then in a second, independent process, emit lines from the 

discrete spectrum. 

 

1) M. Born, Ztschr. f. Phys. 38, S. 803. 1926; Nachrichten der Gšttingen Ges. der 

Wissenschaften 1926, S. 146. 

 

[p-293] 

Equation (17) makes it understood that the maximum intensities of these lines is in the region 

where the total ionization ! dES 0nE
 is large. Also explained is the complete displacement of 

the intensities as compared with direct excitation by collision, for which the excitation from the 

state n  is proportional to the matrix element 
2

nn 00U
!!

, and thus gives qualitatively the 

effects that were discussed in the introduction. 

 Finally, an estimate of the magnitude of the probability for such  excitation in relation to 

the probability of ionization should be given. 

 The total probability is: 
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dESw 0nEI !=  

and therefore: 

!
!

=
dES

dESA

4
h

w

w

0

00

nE

nEEn

I

nn
 

A  is the mean value of EnA , thus: 

!" dESA
4
h

w 00 nEnn
 

and 

A
4
h

w

w

I

nn 0

!  

Therefore: 

EAdEA En !"#  

the emission coefficient for the entire continuum is the same order of magnitude as the emission 

coefficient for a line in the discrete spectra. This shows the inverse of the average time interval, 

and is about [ 18 sec10 !! ]. 

 Therefore, 

E
A

!
"

810
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and 

!"
=

"

#
$

88

I

nn 10
E
10h

w

w 0

 

The width of the continuous line spectra is about 

115sec10 !
=" #  

 

[p-294] 

then: 

7
15

8

I

nn 10
10

10
w

w 0
!""  

This is a very rough estimate. A more exact consideration of the behavior of this transition 

probability could only be obtained though numerical evaluation of the matrix elements EnP , 

0nE
U , perhaps for hydrogen. 

 The fraction 
I

nn

w

w 0

 is the number of atoms, that in a single act, double process are 

brought to the state n , compared to the number of the atoms that are ionized. This is measured 

experimentally by the intensity of a line, for example, the resonance line 01 nn
! . The atoms 

induced to a higher state n  usually radiate the resonance line 01
nn

! , the observed intensity is 
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not only proportional to 0nn
w , but also depends on the transition probability 0nn

w  of all the 

higher states. 

 I greatly thank Professor Born for friendly help and stimulation, without which this work 

would not come to this state. I am also indebted and give great thanks to V. Weisskopf for 

discussions and help. 

 John [read Johns] Hopkins University  
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Notes on the translation: 

1. The page numbers in square brackets correspond to the page numbers in the original paper. 

2. The numbering of the equations corresponds to the equation numbering in the original paper. 

3. When a word was added in the English translation it is placed within square brackets. 

4. When the translator made a correction to either the text or to the equations a note to that effect 

was placed within square brackets and italics. 
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5. The references in the original German paper are not translated into English and appear in their 

original form and position. 

6. When the translator added an important reference it was placed within square brackets and 

italicized. 
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