Projective Geometry and the Origins of the Dirac Equation

Tom Pashby

Department of History and Philosophy of Science University of Pittsburgh thp11@pitt.edu

September 9, 2010

<ロト <四ト <注入 <注下 <注下 <

Introduction	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
0					
00	00		0000	00000	
The Project					

'Dirac's Hidden Geometry' and the Dirac Equation

"Dirac often said that when he was developing quantum mechanics he used his favourite branch of mathematics projective geometry" (Farmelo, 2005)

(日) (同) (三) (三)

Introduction	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
● 0					
00	00		0000	00000	
The Project					

'Dirac's Hidden Geometry' and the Dirac Equation

"Dirac often said that when he was developing quantum mechanics he used his favourite branch of mathematics projective geometry" (Farmelo, 2005)

"Because no letter or manuscript has survived giving the final steps to the solution [the Dirac equation], one is forced to guess how Dirac's ideas progressed" (Mehra and Rechenberg, 2000)

(日) (同) (三) (三)

Introduction	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
● 0					
00	00		0000	00000	
The Project					

'Dirac's Hidden Geometry' and the Dirac Equation

"Dirac often said that when he was developing quantum mechanics he used his favourite branch of mathematics projective geometry" (Farmelo, 2005)

"Because no letter or manuscript has survived giving the final steps to the solution [the Dirac equation], one is forced to guess how Dirac's ideas progressed" (Mehra and Rechenberg, 2000)

"the solution came rather, I would say, out of the blue" (Dirac, 1977)

(日) (同) (三) (三)

Introduction	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
0 0 00	00		00000	00000	
The Project					

<ロ> <同> <同> < 回> < 回>

Pitt HPS

Projective Geometry and *q*-numbers

- Connection is weak
- Inconsistent with Dirac's comments

Introduction	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	
The Project					

Projective Geometry and *q*-numbers

- Connection is weak
- Inconsistent with Dirac's comments
- Projective Geometry and Minkowski space
 - Encouraged by Dirac's comments
 - Useful for visualisation

(日) (同) (三) (三)

Introduction	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
0 0 00	00		00000	00000	
The Project					

- < 同 > < 三 > < 三 >

Pitt HPS

Projective Geometry and q-numbers

- Connection is weak
- Inconsistent with Dirac's comments
- Projective Geometry and Minkowski space
 - Encouraged by Dirac's comments
 - Useful for visualisation
- The Dirac Equation
 - A role for projective geometry?
 - Archival evidence

Introduction	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00 ● 0	00	00	00000	00000	
Dirac and Projec	tive Geometry				

An unusual route for a physicist:

Tom Pashby Projective Geometry and the Origins of the Dirac Equation

Introduction	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00 ● 0	00	00	00000	00000	
Dirac and Project	tive Geometry				

An unusual route for a physicist:

1918-21 Electrical Engineering BSc (Bristol University)

Introduction	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion			
00 ● 0	00		00000	00000				
Dirac and Projective Geometry								

An unusual route for a physicist:

- 1918-21 Electrical Engineering BSc (Bristol University)
- 1921-23 Mathematics (Bristol University)

<ロ> (四) (四) (三) (三)

Introduction	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion			
00	00		0000	00000				
Dirac and Projective Geometry								

An unusual route for a physicist:

- 1918-21 Electrical Engineering BSc (Bristol University)
- 1921-23 Mathematics (Bristol University)
- 1923-26 Physics PhD (St. John's, Cambridge University)

Introduction	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion			
00	00		0000	00000				
Dirac and Projective Geometry								

An unusual route for a physicist:

- 1918-21 Electrical Engineering BSc (Bristol University)
- 1921-23 Mathematics (Bristol University)
- 1923-26 Physics PhD (St. John's, Cambridge University)

・ロン ・回 と ・ ヨン・

Pitt HPS

Dirac had a background in pure mathematics.

Introduction	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00			0000	00000	
Dirac and Projec	tive Geometry				

In 1962 AHQP interview with Thomas Kuhn, Dirac recalls:

Tom Pashby Projective Geometry and the Origins of the Dirac Equation

Introduction	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00		0000	00000	
Dirac and Projec	tive Geometry				

In 1962 AHQP interview with Thomas Kuhn, Dirac recalls:

Projective geometry he "found a most interesting subject."

(日) (同) (三) (三)

Introduction	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00			0000	00000	
Dirac and Projec	tive Geometry				

In 1962 AHQP interview with Thomas Kuhn, Dirac recalls:

- Projective geometry he "found a most interesting subject."
- Taught by Peter Fraser, a "very good mathematics teacher."

(日) (同) (三) (三)

Introduction	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00					
Dirac and Projec	tive Geometry				

In 1962 AHQP interview with Thomas Kuhn, Dirac recalls:

- Projective geometry he "found a most interesting subject."
- Taught by Peter Fraser, a "very good mathematics teacher."
- Fraser former student of H. F. Baker.

(日) (同) (三) (三)

Introduction	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00					
Dirac and Projec	tive Geometry				

In 1962 AHQP interview with Thomas Kuhn, Dirac recalls:

- Projective geometry he "found a most interesting subject."
- Taught by Peter Fraser, a "very good mathematics teacher."
- Fraser former student of H. F. Baker.
- Dirac attended geometry 'tea parties' of Baker in Cambridge.

▲ □ ▶ ▲ □ ▶ ▲

Introduction	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00			0000	00000	
Dirac and Projec	tive Geometry				

In 1962 AHQP interview with Thomas Kuhn, Dirac recalls:

- Projective geometry he "found a most interesting subject."
- Taught by Peter Fraser, a "very good mathematics teacher."
- Fraser former student of H. F. Baker.
- Dirac attended geometry 'tea parties' of Baker in Cambridge.

(日) (同) (三) (三)

Pitt HPS

Baker was author of *The Principles of Geometry* and former student of Arthur Cayley.

Introduction	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	
			0000	00000	
Dirac and Projec	tive Geometry				

In 1962 AHQP interview with Thomas Kuhn, Dirac recalls:

- Projective geometry he "found a most interesting subject."
- Taught by Peter Fraser, a "very good mathematics teacher."
- Fraser former student of H. F. Baker.
- Dirac attended geometry 'tea parties' of Baker in Cambridge.

Baker was author of *The Principles of Geometry* and former student of Arthur Cayley.

Dirac was keen to speak about his fondness for projective geometry. Is there a connection to his work in quantum mechanics?

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
	••				
00	00		0000	00000	
g-numbers and g	-numbers				

Four key papers:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - つへ(

Pitt HPS

Projective Geometry and the Origins of the Dirac Equation

Tom Pashby

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
	••				
00	00		0000	00000	
a-numbers and a	-numbers				

Four key papers:

■ 1925 'The Fundamental Equations of Quantum Mechanics'

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00 00		00000	00000	
q-numbers and o					

Four key papers:

- 1925 'The Fundamental Equations of Quantum Mechanics'
- 1926a 'Quantum Mechanics and a Preliminary Investigation of the Hydrogen Atom'

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3 + 4 = 4

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	
oo q-numbers and o			0000	00000	
q-numbers and c	numbers				

Four key papers:

- 1925 'The Fundamental Equations of Quantum Mechanics'
- 1926a 'Quantum Mechanics and a Preliminary Investigation of the Hydrogen Atom'

< 17 > <

3 × 1

Pitt HPS

1926b 'On Quantum Algebra'

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	
oo q-numbers and o			0000	00000	
q-numbers and c	numbers				

Four key papers:

- 1925 'The Fundamental Equations of Quantum Mechanics'
- 1926a 'Quantum Mechanics and a Preliminary Investigation of the Hydrogen Atom'

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3 + 4 = 4

- 1926b 'On Quantum Algebra'
- 1927 'The Physical Interpretation of Quantum Mechanics'

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
	00				
00	00		0000	00000	
q-numbers and c-	numbers				

Definition of q-numbers

At present one can form no picture of what a q-number is like. One cannot say that one q-number is greater or less than another. All one knows about q-numbers is that if z_1 and z_2 are two q-numbers, or one q-number and one c-number, there exist the numbers $z_1 + z_2$, $z_1 z_2$, $z_2 z_1$, which will in general be q-numbers but may be c-numbers. One knows nothing of the processes by which the numbers are formed except that they satisfy all the ordinary laws of algebra, excluding the commutative law of multiplication, *i.e.*,

 $\begin{aligned} z_1+z_2&=z_2+z_1,\\ (z_1+z_2)+z_3&=z_1+(z_2+z_3),\\ (z_1z_2)\,z_3&=z_1\,(z_2z_3),\\ z_1\,(z_2+z_3)&=z_1z_2+z_1z_3, \qquad (z_1+z_2)\,z_3=z_1z_3+z_2z_3,\\ \text{and if} \\ z_1z_2&=0, \end{aligned}$

either

$$z_1 = 0$$
 or $z_2 = 0$;

but

 $z_1z_2 \neq z_2z_1,$

<ロ> <同> <同> < 回> < 回>

э

Pitt HPS

in general, except when z_1 or z_2 is a c-number.

Tom Pashby

Projective Geometry and the Origins of the Dirac Equation

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion	
00	•0		0000	00000		
Projective Geometry						

Existing theses concerning Dirac's *q*-number quantum algebra (1925-6):

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion	
	00					
00	•0		0000	00000		
Projective Geometry						

Existing theses concerning Dirac's *q*-number quantum algebra (1925-6):

1 Dirac took the axioms of his quantum algebra from Baker's *Principles of Geometry*. (Mehra and Rechenberg 1982)

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00 00	00 •0		00000	00000	
Projective Geome	etry				

Existing theses concerning Dirac's *q*-number quantum algebra (1925-6):

- Dirac took the axioms of his quantum algebra from Baker's *Principles of Geometry*. (Mehra and Rechenberg 1982)
- 2 Dirac used his knowledge of geometry to gain insight into the nature of *q*-numbers. (Mehra and Rechenberg, Rechenberg 1987)

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion	
00 00	00 •0		00000	00000		
Projective Geometry						

Existing theses concerning Dirac's *q*-number quantum algebra (1925-6):

- Dirac took the axioms of his quantum algebra from Baker's *Principles of Geometry*. (Mehra and Rechenberg 1982)
- 2 Dirac used his knowledge of geometry to gain insight into the nature of *q*-numbers. (Mehra and Rechenberg, Rechenberg 1987)

(日) (同) (三) (三)

Pitt HPS

 Dirac used projective geometry as a means to visualize q-numbers. (Mehra and Rechenberg, Kragh 1981)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion	
00 00	00 •0		00000	00000		
Projective Geometry						

Existing theses concerning Dirac's *q*-number quantum algebra (1925-6):

- Dirac took the axioms of his quantum algebra from Baker's *Principles of Geometry*. (Mehra and Rechenberg 1982)
- 2 Dirac used his knowledge of geometry to gain insight into the nature of *q*-numbers. (Mehra and Rechenberg, Rechenberg 1987)
- Dirac used projective geometry as a means to visualize q-numbers. (Mehra and Rechenberg, Kragh 1981)
- Dirac's quantum algebra was essentially geometrical (Rechenberg 1987)

Tom Pashby

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion	
	00		0000	00000		
Projective Geometry						

Pitt HPS

The Role of Projective Geometry

No direct evidence, based primarily on Dirac's comments.

Tom Pashby Projective Geometry and the Origins of the Dirac Equation

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion	
00	00	00	00000	00000	00	
	00					
Projective Geometry						

(日) (同) (三) (三)

Pitt HPS

The Role of Projective Geometry

No direct evidence, based primarily on Dirac's comments.

1 is supported by similarity to Baker's symbolic algebra.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
	00				
Projective Geom	etry				

No direct evidence, based primarily on Dirac's comments.

- **1** is supported by similarity to Baker's symbolic algebra.
- is defensible (analogy between non-commutative geometries and *q*-numbers).

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
	00				
Projective Geom	etry				

No direct evidence, based primarily on Dirac's comments.

- **1** is supported by similarity to Baker's symbolic algebra.
- is defensible (analogy between non-commutative geometries and *q*-numbers).
- disregards i) Dirac's later comments ii) difficulties of visualization.

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
	00				
Projective Geom	etry				

No direct evidence, based primarily on Dirac's comments.

- **1** is supported by similarity to Baker's symbolic algebra.
- is defensible (analogy between non-commutative geometries and *q*-numbers).
- disregards i) Dirac's later comments ii) difficulties of visualization.
- 4 overemphasizes geometrical analogy essentially algebraic.

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
	00				
Projective Geom	etry				

No direct evidence, based primarily on Dirac's comments.

- **1** is supported by similarity to Baker's symbolic algebra.
- is defensible (analogy between non-commutative geometries and *q*-numbers).
- disregards i) Dirac's later comments ii) difficulties of visualization.
- 4 overemphasizes geometrical analogy essentially algebraic.

Dirac's primary role for projective geometry was as a means of visualization for Minkowski space and Lorentz transformations NOT *q*-numbers.

(日) (同) (三) (三)

Introduction (Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
		••			
	00		0000	00000	
AHQP Interview					

AHQP interview with Kuhn (1962)

Tom Pashby Projective Geometry and the Origins of the Dirac Equation

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	•0	00000	00000	00
			0000	00000	
AHQP Interview					

AHQP interview with Kuhn (1962)

"All my work since then [Bristol] has been very much of a geometrical nature, rather than of an algebraic nature"

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	•0	00000	00000	00
AHQP Interview					

AHQP interview with Kuhn (1962)

"All my work since then [Bristol] has been very much of a geometrical nature, rather than of an algebraic nature"

Puzzled, Kuhn asks later (1963) if Dirac regards his "peculiar q-number manipulations ... as being algebraic rather than geometric."

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	•0	00000	00000	00
AHQP Interview					

AHQP interview with Kuhn (1962)

"All my work since then [Bristol] has been very much of a geometrical nature, rather than of an algebraic nature"

Puzzled, Kuhn asks later (1963) if Dirac regards his "peculiar q-number manipulations ... as being algebraic rather than geometric."

"Yes, but I only used them in an elementary way."

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	•0	00000	00000	00
AHQP Interview					

AHQP interview with Kuhn (1962)

"All my work since then [Bristol] has been very much of a geometrical nature, rather than of an algebraic nature"

Puzzled, Kuhn asks later (1963) if Dirac regards his "peculiar q-number manipulations ... as being algebraic rather than geometric."

"Yes, but I only used them in an elementary way."

(日) (同) (三) (三)

Pitt HPS

So what is the connection to projective geometry?

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
AHQP Interview					

Projective Geometry and Special Relativity

"Four dimensions were very popular then for the geometrists to work with. It was all done with the notions of projective geometry rather than metrical geometry. So I became very familiar with that kind of mathematics in that way. I've found it useful since then in understanding the relations which you can have in Minkowskis space. You can picture all the directions in Minkowski space as the points in a three-dimensional vector space. I always used these geometri- cal ideas for getting clear notions about relationships in relativity although I didn't refer to them in my published works." (ibid.)

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
AHQP Interview					

Projective Geometry and Special Relativity

"Four dimensions were very popular then for the geometrists to work with. It was all done with the notions of projective geometry rather than metrical geometry. So I became very familiar with that kind of mathematics in that way. I've found it useful since then in understanding the relations which you can have in Minkowskis space. You can picture all the directions in Minkowski space as the points in a three-dimensional vector space. I always used these geometri- cal ideas for getting clear notions about relationships in relativity although I didn't refer to them in my published works." (ibid.)

(日) (同) (三) (三)

Pitt HPS

Kuhn asks, anything to do with quantum mechanics?

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
AHQP Interview					

Projective Geometry and Special Relativity

"Four dimensions were very popular then for the geometrists to work with. It was all done with the notions of projective geometry rather than metrical geometry. So I became very familiar with that kind of mathematics in that way. I've found it useful since then in understanding the relations which you can have in Minkowskis space. You can picture all the directions in Minkowski space as the points in a three-dimensional vector space. I always used these geometri- cal ideas for getting clear notions about relationships in relativity although I didn't refer to them in my published works." (ibid.)

Kuhn asks, anything to do with quantum mechanics?

"No. It doesn't connect at all with non-commutative (=) =

Tom Pashby

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
		•	0000	00000	
A New Role					

<ロ> (日) (日) (日) (日) (日)

Pitt HPS

A New Role for Projective Geometry

Dirac repeatedly emphasized connection to Minkowski space (Trieste & Boston 1972).

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
		•			
A New Role					

Dirac repeatedly emphasized connection to Minkowski space (Trieste & Boston 1972).

If projective geometry is relevant anywhere, relevant to discovery of the relativistic electron equation.

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
		•			
A New Role					

Dirac repeatedly emphasized connection to Minkowski space (Trieste & Boston 1972).

If projective geometry is relevant anywhere, relevant to discovery of the relativistic electron equation.

1 Dirac was trying to find a Lorentz invariant wave equation.

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
		•	0000	00000	
A New Role					

Dirac repeatedly emphasized connection to Minkowski space (Trieste & Boston 1972).

If projective geometry is relevant anywhere, relevant to discovery of the relativistic electron equation.

1 Dirac was trying to find a Lorentz invariant wave equation.

(日) (同) (三) (三)

Pitt HPS

2 Dirac understood Minkowski space and Lorentz transformations in terms of projective geometry.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
		•	0000	00000	
A New Role					

Dirac repeatedly emphasized connection to Minkowski space (Trieste & Boston 1972).

If projective geometry is relevant anywhere, relevant to discovery of the relativistic electron equation.

1 Dirac was trying to find a Lorentz invariant wave equation.

(日) (同) (三) (三)

Pitt HPS

2 Dirac understood Minkowski space and Lorentz transformations in terms of projective geometry.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
		•	0000	00000	
A New Role					

Dirac repeatedly emphasized connection to Minkowski space (Trieste & Boston 1972).

If projective geometry is relevant anywhere, relevant to discovery of the relativistic electron equation.

- **1** Dirac was trying to find a Lorentz invariant wave equation.
- 2 Dirac understood Minkowski space and Lorentz transformations in terms of projective geometry.

Did Dirac use projective geometry in his search for the Dirac equation?

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
			0000		
			0000	00000	
Projective Geome	try				

What is Projective Geometry?

The study of geometrical properties invariant under projection.

Pitt HPS

<ロ> (日) (日) (日) (日) (日)

Tom Pashby

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
			0000		
			0000	00000	
Projective Geome	try				

What is Projective Geometry?

The study of geometrical properties invariant under projection.

<ロ> (日) (日) (日) (日) (日)

Pitt HPS

Any two lines meet at a unique point.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
			0000		
			0000	00000	
Projective Geome	try				

What is Projective Geometry?

The study of geometrical properties invariant under projection.

Pitt HPS

- Any two lines meet at a unique point.
- Parallel lines meet at a point at infinity.

Tom Pashby

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
			00000		
			0000	00000	
Projective Geome	etry				

An Illustration

Tom Pashby

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
			00000		
Projective Geome	etry				

<ロ> (日) (日) (日) (日) (日)

Pitt HPS

Homogeneous Co-ordinates

• A projective space contains the points at infinity.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
			00000		
Projective Geome	etry				

- A projective space contains the points at infinity.
- A point in real projective space *RPⁿ* has *n* + 1 *homogeneous* co-ordinates.

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
Projective Geome	etry				

- A projective space contains the points at infinity.
- A point in real projective space *RPⁿ* has *n* + 1 *homogeneous* co-ordinates.
- Point in real projective plane has 3 co-ords (x_1, x_2, x_3) .

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
			00000		
Projective Geome	etry				

- A projective space contains the points at infinity.
- A point in real projective space RPⁿ has n + 1 homogeneous co-ordinates.

(日) (同) (三) (三)

- Point in real projective plane has 3 co-ords (x_1, x_2, x_3) .
- Consider a point (y_1, y_2) with $y_1 = \frac{x_1}{x_3}$, $y_2 = \frac{x_2}{x_3}$ so that $(x_1, x_2, x_3) \equiv (cx_1, cx_2, cx_3)$.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
Projective Geome	etry				

- A projective space contains the points at infinity.
- A point in real projective space *RPⁿ* has *n*+1 *homogeneous* co-ordinates.
- Point in real projective plane has 3 co-ords (x_1, x_2, x_3) .
- Consider a point (y_1, y_2) with $y_1 = \frac{x_1}{x_3}$, $y_2 = \frac{x_2}{x_3}$ so that $(x_1, x_2, x_3) \equiv (cx_1, cx_2, cx_3)$.
- The points (x₁, x₂, 0) form the *line at infinity*; approached from either direction.

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
			00000		
			0000	00000	
Projective Geom	etry				

Conic Sections

Conic sections 1) Parabolae, 2) Circles and Ellipses, 3) Hyberbolae.

• • • • • • • •

3.0

Pitt HPS

Tom Pashby

Introduction 00 00	Quantum Algebra 00 00	Dirac's Testimony 00 0	Minkowski Space 0000● 0000	Dirac Equation 00000 00000	Conclusion 00
Projective Geom	etry				
Conics					

 Under projection, circle not mapped to circle but conic mapped to conic.

<ロ> <四> <四> <日> <日> <日</p>

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
			00000		
00	00		0000	00000	
Projective Geom	etry				
<u> </u>					

- Under projection, circle not mapped to circle but conic mapped to conic.
- Classified by how they meet the line at infinity e.g. hyperbola meets at asymptotes.

<ロ> (日) (日) (日) (日) (日)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	
00	00		0000	00000	
Projective Geom	etry				

- Under projection, circle not mapped to circle but conic mapped to conic.
- Classified by how they meet the line at infinity e.g. hyperbola meets at asymptotes.
- Related by projections that swap points, so not distinguished projectively.

<ロ> (日) (日) (日) (日) (日)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00 00	00	00	00000 0000	00000	
Projective Geom	etry				

- Under projection, circle not mapped to circle but conic mapped to conic.
- Classified by how they meet the line at infinity e.g. hyperbola meets at asymptotes.
- Related by projections that swap points, so not distinguished projectively.
- Quadrics generalise the conic to higher dimensional spaces.

<ロ> <四> <四> <日> <日> <日</p>

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
			0000		
Minkowski Space					

Minkowski (1908): tip of velocity vector constrained to surface of a hyperboloid $t^2 - x^2 - y^2 - z^2 = 1$.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
			0000		
Minkowski Space					

Minkowski (1908): tip of velocity vector constrained to surface of a hyperboloid $t^2 - x^2 - y^2 - z^2 = 1$.

<ロ> (日) (日) (日) (日) (日)

Pitt HPS

Tom Pashby

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
			0000		
Minkowski Space					

Minkowski (1908): tip of velocity vector constrained to surface of a hyperboloid $t^2 - x^2 - y^2 - z^2 = 1$.

<ロ> (日) (日) (日) (日) (日)

Pitt HPS

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
			0000		
Minkowski Space					

Minkowski (1908): tip of velocity vector constrained to surface of a hyperboloid $t^2 - x^2 - y^2 - z^2 = 1$.

・ロト ・回ト ・ヨト・

Pitt HPS

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
			0000		
Minkowski Space					

Minkowski (1908): tip of velocity vector constrained to surface of a hyperboloid $t^2 - x^2 - y^2 - z^2 = 1$.

• • • • • • • • • • • • •

Pitt HPS

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
			●000	00000	
Minkowski Space					

Minkowski (1908): tip of velocity vector constrained to surface of a hyperboloid $t^2 - x^2 - y^2 - z^2 = 1$.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

.∃⇒ . ∢

Pitt HPS

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
			0000		
Minkowski Space					

Minkowski (1908): tip of velocity vector constrained to surface of a hyperboloid $t^2 - x^2 - y^2 - z^2 = 1$.

• • • • • • • • • • • • •

Pitt HPS

Lorentz transformation leaves hyperboloid invariant.

Tom Pashby

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
			0000	00000	
Minkowski Space					

Minkowski Space in Projective Geometry

 4-dim. space with 3-dim. hyperplane at infinity (points at infinity have 4 co-ords.).

<ロ> (日) (日) (日) (日) (日)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
			0000		
Minkowski Space					

- 4-dim. space with 3-dim. hyperplane at infinity (points at infinity have 4 co-ords.).
- Each direction with vector x^μ corresponds to a point x^μ in the hyperplane at infinity.

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
			0000	00000	
Minkowski Space					

- 4-dim. space with 3-dim. hyperplane at infinity (points at infinity have 4 co-ords.).
- Each direction with vector x^μ corresponds to a point x^μ in the hyperplane at infinity.
- Directions in Minkowski space: time-like, space-like or light-like.

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00		0000	00000	
Minkowski Space					

- 4-dim. space with 3-dim. hyperplane at infinity (points at infinity have 4 co-ords.).
- Each direction with vector x^μ corresponds to a point x^μ in the hyperplane at infinity.
- Directions in Minkowski space: time-like, space-like or light-like.
- Correspond to: points inside, outside, or on the *absolute quadric*.

(a)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00		0000	00000	
Minkowski Space					

- 4-dim. space with 3-dim. hyperplane at infinity (points at infinity have 4 co-ords.).
- Each direction with vector x^μ corresponds to a point x^μ in the hyperplane at infinity.
- Directions in Minkowski space: time-like, space-like or light-like.
- Correspond to: points inside, outside, or on the *absolute quadric*.
- Lorentz transformations leave the *absolute quadric* invariant.

(a)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
			0000		
Minkowski Space					

The Absolute Quadric

Cayley (1859) used the *absolute* (invariant quadric at infinity) to introduce metrical notions into PG.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00		00000	00000	
Minkowski Space					

The Absolute Quadric

Cayley (1859) used the *absolute* (invariant quadric at infinity) to introduce metrical notions into PG.

Klein's (1871) relative consistency proofs demonstrated that Euclidean, hyperbolic and parabolic geometries were subgeometries of a projective geometry, each with a different choice of the absolute quadric.

< (17) > <

∃ > ∢

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
			0000		
Minkowski Space					

The Absolute Quadric

Cayley (1859) used the *absolute* (invariant quadric at infinity) to introduce metrical notions into PG.

Klein's (1871) relative consistency proofs demonstrated that Euclidean, hyperbolic and parabolic geometries were subgeometries of a projective geometry, each with a different choice of the absolute quadric.

In the case of Minkowski space, defined by the Minkowski metric:

$$\eta_{\mu\nu}x^{\mu}x^{\nu} = -(x^0)^2 + (x^1)^2 + (x^2)^2 + (x^3)^2 = 0$$

< < >> < </p>

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00		0000	00000	
Minkowski Space					

Dirac Speaks

"if we just think in terms of this hyperplane at infinity, we have a three-dimensional space. Talking of a four dimensional space is something that is hard to imagine, but we can't really imagine it. We talk about it as though we could, but when we are concerned just with directions, the things in the space of physics, we can represent them all in terms of a three-dimensional space according to the methods of projective geometry. We have a three-dimensional projective space in which there is an absolute quadric." (Dirac, 1972)

< < >> < </p>

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
What We Know					

・ロト ・回ト ・ヨト ・ヨト

э

Pitt HPS

Dirac's Task

Dissatisfied with Klein-Gordon equation

$$\left[\left(ih\frac{\partial}{c\partial t}+\frac{e}{c}A_{0}\right)^{2}+\sum_{r}\left(-ih\frac{\partial}{\partial x_{r}}+\frac{e}{c}A_{r}\right)^{2}+m^{2}c^{2}\right]\psi=0.$$

Tom Pashby

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
What We Know					

・ロト ・回ト ・ヨト ・ヨト

Pitt HPS

Dirac's Task

Dissatisfied with Klein-Gordon equation

$$\left[\left(ih\frac{\partial}{c\partial t}+\frac{e}{c}A_{0}\right)^{2}+\sum_{r}\left(-ih\frac{\partial}{\partial x_{r}}+\frac{e}{c}A_{r}\right)^{2}+m^{2}c^{2}\right]\psi=0.$$

What Dirac wants:

Tom Pashby <u>Projective Geo</u>metry and the Origins of the Dirac Equation

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
What We Know					

Dirac's Task

Dissatisfied with Klein-Gordon equation

$$\left[\left(ih\frac{\partial}{c\partial t}+\frac{e}{c}A_{0}\right)^{2}+\sum_{r}\left(-ih\frac{\partial}{\partial x_{r}}+\frac{e}{c}A_{r}\right)^{2}+m^{2}c^{2}\right]\psi=0.$$

What Dirac wants:

1 Wave equation invariant under Lorentz transformation.

Pitt HPS

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
What We Know					

Dirac's Task

Dissatisfied with Klein-Gordon equation

$$\left[\left(ih\frac{\partial}{c\partial t}+\frac{e}{c}A_{0}\right)^{2}+\sum_{r}\left(-ih\frac{\partial}{\partial x_{r}}+\frac{e}{c}A_{r}\right)^{2}+m^{2}c^{2}\right]\psi=0.$$

What Dirac wants:

1 Wave equation invariant under Lorentz transformation.

(日) (同) (三) (三)

Pitt HPS

2 First order in time, so first order in the momenta.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
What We Know					

Dirac's Task

Dissatisfied with Klein-Gordon equation

$$\left[\left(ih\frac{\partial}{c\partial t}+\frac{e}{c}A_{0}\right)^{2}+\sum_{r}\left(-ih\frac{\partial}{\partial x_{r}}+\frac{e}{c}A_{r}\right)^{2}+m^{2}c^{2}\right]\psi=0.$$

What Dirac wants:

1 Wave equation invariant under Lorentz transformation.

(日) (同) (三) (三)

- **2** First order in time, so first order in the momenta.
- 3 Agrees with Klein-Gordon equation.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
				00000	
00	00		0000	00000	
What We Know					

"Playing around with mathematics" he noticed the "very pretty mathematical result" (Dirac, 1972)

$$(\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3)^2 = p_1^2 + p_2^2 + p_3^2$$

Pitt HPS

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00		00000	00000	
What We Know					

"Playing around with mathematics" he noticed the "very pretty mathematical result" (Dirac, 1972)

$$(\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3)^2 = p_1^2 + p_2^2 + p_3^2$$

(日) (同) (三) (三)

Pitt HPS

 2×2 matrices were not enough for sum of 4 squares.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00		00000	00000	
What We Know					

"Playing around with mathematics" he noticed the "very pretty mathematical result" (Dirac, 1972)

$$(\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3)^2 = p_1^2 + p_2^2 + p_3^2.$$

 2×2 matrices were not enough for sum of 4 squares.

"It took me quite a while, studying over this dilemma ..."

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00		00000	00000	
What We Know					

"Playing around with mathematics" he noticed the "very pretty mathematical result" (Dirac, 1972)

$$(\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3)^2 = p_1^2 + p_2^2 + p_3^2$$

 2×2 matrices were not enough for sum of 4 squares.

"It took me quite a while, studying over this dilemma ..."

(日) (同) (三) (三)

Pitt HPS

Came to realize that 4×4 matrices would suffice.

Introduction 00 00	Quantum Algebra 00 00	Dirac's Testimony 00 0	Minkowski Space 00000 0000	Dirac Equation 00●00 00000	Conclusion 00
What We Know					

The Solution

The symmetry between p_0 and p_1 , p_2 , p_3 required by relativity shows that, since the Hamiltonian we want is linear in p_0 , it must also be linear in p_1 , p_2 and p_3 . Our wave equation is therefore of the form

$$(p_0 + \alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3 + \beta) \psi = 0, \qquad (4)$$

Equation (4) leads to

$$\begin{aligned} 0 &= (-p_0 + \alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3 + \beta) (p_0 + \alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3 + \beta) \psi \\ &= [-p_0^2 + \Sigma \alpha_1^2 p_1^2 + \Sigma (\alpha_1 \alpha_2 + \alpha_2 \alpha_1) p_1 p_2 + \beta^2 + \Sigma (\alpha_1 \beta + \beta \alpha_1) p_1] \psi, \end{aligned}$$
(5)

where the Σ refers to cyclic permutation of the suffixes 1, 2, 3. This agrees with (3) if

$$\begin{array}{ll} \alpha_r^2 = 1, & \alpha_r \alpha_s + \alpha_s \alpha_r = 0 & (r \neq s) \\ \beta^2 = m^2 c^2, & \alpha_r \beta + \beta \alpha_r = 0 \end{array} \right\} \quad r, \, s = 1, \, 2, \, 3.$$

If we put $\beta = \alpha_4 mc$, these conditions become

$$\alpha_{\mu}^{2} = 1$$
 $\alpha_{\mu}\alpha_{\nu} + \alpha_{\nu}\alpha_{\mu} = 0 \ (\mu \neq \nu)$ $\mu, \nu = 1, 2, 3, 4.$ (6)

・ロト ・四ト ・ヨト ・ヨト

Pitt HPS

We can suppose the α_{μ} 's to be expressed as matrices in some matrix scheme,

Tom Pashby

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
				00000	
00	00		0000	00000	
What We Know					

The Solution

We must now find four matrices α_{μ} to satisfy the conditions (6). We make use of the matrices

 $\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

which Pauli introduced* to describe the three components of spin angular momentum. These matrices have just the properties

 $\sigma_r^2 = 1$ $\sigma_r \sigma_s + \sigma_s \sigma_r = 0$, $(r \neq s)$, (7)

that we require for our z^* s. We cannot, however, just take the c^* s to be three of our z^* s, because then it would not be possible to find the fourth. We must extend the c^* in a diagonal manner to bring in two more rows and columns, so that we can introduce three more matrices g_{1} , g_{2} , g_{3} of the same form as σ_{1} , σ_{2} , σ_{3} but referring to different rows and columns, thus :--

$$\begin{split} \sigma_1 &= \left\{ \begin{matrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{matrix} \right\} \quad \sigma_2 &= \left\{ \begin{matrix} 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & 0 & -i \end{matrix} \right\} \quad \sigma_3 &= \left\{ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -i \\ 0 & 0 & 0 & -i \end{matrix} \right\} \\ \rho_1 &= \left\{ \begin{matrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & -i & 0 \\ 0 & 0 & -i \\ 0 & 0 & -i \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \rho_3 &= \left\{ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 1 & 0 & 0 \\ 0 & i & 0 & 0 \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & -i & 0 \\ 0 & 0 & -i \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & -i \\ 0 & 0 & 0 & -i \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & -i \\ 0 & 0 & 0 & -i \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & -i \\ 0 & 0 & 0 & -i \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & -i \\ 0 & 0 & 0 & -i \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & -i \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\} \quad \left\{ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 & -i \end{matrix} \right\}$$

If we now take

 $\alpha_1=\rho_1\sigma_1, \quad \ \alpha_2=\rho_1\sigma_2, \quad \ \alpha_3=\rho_1\sigma_3, \quad \ \alpha_4=\rho_3,$

all the conditions (6) are satisfied, e.g.,

$$\begin{split} \alpha_1{}^2 &= \rho_1\sigma_1\rho_1\sigma_1 = \rho_1{}^2\sigma_1{}^2 = 1\\ \alpha_1\alpha_2 &= \rho_1\sigma_1\rho_1\sigma_2 = \rho_1{}^2\sigma_1\sigma_2 = -\rho_1{}^2\sigma_2\sigma_1 = -\alpha_2\alpha_1. \end{split}$$

Pitt HPS

Tom Pashby

Introduction 00 00	Quantum Algebra 00 00	Dirac's Testimony 00 0	Minkowski Space 00000 0000	Dirac Equation 0000● 00000	Conclusion 00
What We Know					

Dirac's Method

John Slater:

"... we can hardly conceive of anyone else having thought of [the Dirac equation]. It shows the peculiar power of the sort of intuitive genius which he has possessed more than perhaps any of the other scientists of the period."

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

.∃ ▶ . ◄

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	
00	00		0000	00000	
What We Know					

Dirac's Method

John Slater:

"... we can hardly conceive of anyone else having thought of [the Dirac equation]. It shows the peculiar power of the sort of intuitive genius which he has possessed more than perhaps any of the other scientists of the period."

Can we say more about Dirac's process of discovery than an idea "out of the blue?"

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ > ∢

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
				00000	
00	00		0000	00000	
What We Know					

Dirac's Method

John Slater:

"... we can hardly conceive of anyone else having thought of [the Dirac equation]. It shows the peculiar power of the sort of intuitive genius which he has possessed more than perhaps any of the other scientists of the period."

Can we say more about Dirac's process of discovery than an idea "out of the blue?"

< ロ > < 同 > < 三 > < 三

Pitt HPS

In particular, did he use projective geometry?

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00 00	00	00	00000	00000	
Archival Evidence	2				

$$F\psi \equiv \left[\left(\alpha_{5\mu} + i\alpha_{6\mu} \right) \left(d_{\mu} + iA_{\mu} \right) + mc \right] \psi = 0 \tag{1}$$

・ロト ・回ト ・ヨト ・ヨト

э

Pitt HPS

Dirac has found here the general form of the equation he seeks.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	
			0000	00000	
Archival Evidence	e				

$$F\psi \equiv \left[\left(\alpha_{5\mu} + i\alpha_{6\mu} \right) \left(d_{\mu} + iA_{\mu} \right) + mc \right] \psi = 0 \tag{1}$$

・ロト ・回ト ・ヨト ・ヨト

- Dirac has found here the general form of the equation he seeks.
- No explicit (anti)-commutation relations.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	
			0000	00000	
Archival Evidence	e				

$$F\psi \equiv \left[\left(\alpha_{5\mu} + i\alpha_{6\mu} \right) \left(d_{\mu} + iA_{\mu} \right) + mc \right] \psi = 0 \tag{1}$$

(日) (同) (三) (三)

Pitt HPS

- Dirac has found here the general form of the equation he seeks.
- No explicit (anti)-commutation relations.
- Nature of the α 's unclear, but not *c*-numbers.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
				0000	
Archival Evidence					

・ロト ・回ト ・ヨト ・ヨト

э

Pitt HPS

Agrees with Klein-Gordon equation.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00 00	00	00	00000	00000	
Archival Evidence	9				
					1

- Agrees with Klein-Gordon equation.
- Dirac knows the commutation properties of his α 's.

Pitt HPS

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00 00	00	00	00000	00000	
Archival Evidence	9				
					1

- Agrees with Klein-Gordon equation.
- Dirac knows the commutation properties of his α 's.

Pitt HPS

• Explicit 4×4 matrix representation.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00 00	00	00	00000	00000	
Archival Evidence	9				
					1

- Agrees with Klein-Gordon equation.
- Dirac knows the commutation properties of his α 's.

Pitt HPS

• Explicit 4×4 matrix representation.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00 00	00	00	00000	00000	
Archival Evidence	9				
					1

- Agrees with Klein-Gordon equation.
- Dirac knows the commutation properties of his α 's.

< < >> < </p>

Pitt HPS

Explicit 4 × 4 matrix representation.

Where did they come from?

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
				00000	
Archival Evidence	e				

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへの

Pitt HPS

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	
Archival Evidence					

Linear equation of a line between y and z, defines a linear complex.

<ロ> <四> <四> <日> <日> <日</p>

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00 00	00	00	00000	00000	
Archival Evidence	2				

Linear equation of a line between y and z, defines a linear complex.

Pitt HPS

• Expressed in terms of α 's.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00 00	00	00	00000	00000	
Archival Evidence	2				

Linear equation of a line between y and z, defines a linear complex.

(日) (同) (三) (三)

- Expressed in terms of α 's.
- Sets up system of 4 equations defining a line.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00 00	00	00	00000	00000	
Archival Evidence	2				

- Linear equation of a line between y and z, defines a linear complex.
- Expressed in terms of α 's.
- Sets up system of 4 equations defining a line.
- In Klein (1870) co-ordinates, this has a general quadratic form.

(日) (同) (三) (三)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
			0000	00000	
Archival Evidenc	e				

Did Projective Geometry Lead to the Dirac Equation?

Tom Pashby Projective Geometry and the Origins of the Dirac Equation

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
			0000	00000	
Archival Evidence	e				

Dirac begins by considering projective geometry (p. 2).

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
			0000	00000	
Archival Evidence					

Dirac begins by considering projective geometry (p. 2).

Pitt HPS

• No matrix representation of α 's until p. 7.

Tom Pashby Projective Geometry and the Origins of the Dirac Equation

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
			0000	00000	
Archival Evidence	2				

- Dirac begins by considering projective geometry (p. 2).
- No matrix representation of α 's until p. 7.
- Pauli matrices appear *after* Dirac matrices.

< ロ > < 同 > < 三 > < 三

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
			0000	00000	
Archival Evidence	2				

- Dirac begins by considering projective geometry (p. 2).
- No matrix representation of α 's until p. 7.
- Pauli matrices appear *after* Dirac matrices.

< ロ > < 同 > < 三 > < 三

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
			0000	00000	
Archival Evidence					

Dirac begins by considering projective geometry (p. 2).

(日) (同) (三) (

Pitt HPS

- No matrix representation of α 's until p. 7.
- Pauli matrices appear *after* Dirac matrices.

Was he guided by geometrical, not algebraic reasoning?

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00		0000	00000	
Archival Evidence	e				

<ロ> <同> <同> < 回> < 回>

э

Pitt HPS

Begins considering properties of 2×2 matrices.

Tom Pashby Projective Geometry and the Origins of the Dirac Equation

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
				00000	
00	00		0000	00000	
Archival Evidence	è				

- Begins considering properties of 2×2 matrices.
- Realizes Pauli matrices will linearize the massless wave equation.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00 00	00		00000	00000	
Archival Evidence	e				

- \blacksquare Begins considering properties of 2×2 matrices.
- Realizes Pauli matrices will linearize the massless wave equation.

$$\frac{\partial}{\partial t} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = \frac{\partial}{\partial x} \begin{pmatrix} \psi_1 \\ -\psi_2 \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} \psi_2 \\ \psi_1 \end{pmatrix} + \frac{\partial}{\partial z} \begin{pmatrix} i\psi_2 \\ -i\psi_1 \end{pmatrix}$$
$$= \left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{\partial}{\partial x} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \frac{\partial}{\partial y} + \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \frac{\partial}{\partial z} \right\} \begin{pmatrix} \psi_2 \\ \psi_1 \end{pmatrix}$$

<ロ> <四> <四> <日> <日> <日</p>

Pitt HPS

Tom Pashby

Projective Geometry and the Origins of the Dirac Equation

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00 00	00		00000	00000	
Archival Evidence	e				

- Begins considering properties of 2×2 matrices.
- Realizes Pauli matrices will linearize the massless wave equation.

$$\frac{\partial}{\partial t} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = \frac{\partial}{\partial x} \begin{pmatrix} \psi_1 \\ -\psi_2 \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} \psi_2 \\ \psi_1 \end{pmatrix} + \frac{\partial}{\partial z} \begin{pmatrix} i\psi_2 \\ -i\psi_1 \end{pmatrix}$$
$$= \left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{\partial}{\partial x} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \frac{\partial}{\partial y} + \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \frac{\partial}{\partial z} \right\} \begin{pmatrix} \psi_2 \\ \psi_1 \end{pmatrix}$$

(日) (同) (三) (三)

Pitt HPS

• Tries to find 3×3 matrices with these properties.

Projective Geometry and the Origins of the Dirac Equation

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00 00	00		00000	00000	
Archival Evidence	e				

- Begins considering properties of 2×2 matrices.
- Realizes Pauli matrices will linearize the massless wave equation.

$$\frac{\partial}{\partial t} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = \frac{\partial}{\partial x} \begin{pmatrix} \psi_1 \\ -\psi_2 \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} \psi_2 \\ \psi_1 \end{pmatrix} + \frac{\partial}{\partial z} \begin{pmatrix} i\psi_2 \\ -i\psi_1 \end{pmatrix}$$

$$= \left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{\partial}{\partial x} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \frac{\partial}{\partial y} + \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \frac{\partial}{\partial z} \right\} \begin{pmatrix} \psi_2 \\ \psi_1 \end{pmatrix}$$

(日) (同) (日) (日)

- Tries to find 3×3 matrices with these properties.
- Finds suitable 4×4 matrices leads to α 's on p. 7.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00		00000	00000	•0
00	00		0000	00000	
Conclusion					

・ロト ・四ト ・ヨト ・ヨト ・ヨー うへの

Pitt HPS

Tom Pashby Projective Geometry and the Origins of the Dirac Equation

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
					0
			0000	00000	
Conclusion					

Dirac did not use projective geometry in his early work on QM.

イロト イ団ト イヨト イヨト

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
					0
			0000	00000	
Conclusion					

- Dirac did not use projective geometry in his early work on QM.
- Projective geometry was primarily a means for visualisation of Minkowski space.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
					0
			0000	00000	
Conclusion					

- Dirac did not use projective geometry in his early work on QM.
- Projective geometry was primarily a means for visualisation of Minkowski space.

Pitt HPS

Definite mathematical correspondence and clear role.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
					0
			0000	00000	
Conclusion					

- Dirac did not use projective geometry in his early work on QM.
- Projective geometry was primarily a means for visualisation of Minkowski space.
- Definite mathematical correspondence and clear role.
- Dirac used projective geometry in his search for the Dirac equation.

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
					00
			0000	00000	
Conclusion					

Pitt HPS

Tom Pashby Projective Geometry and the Origins of the Dirac Equation

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
					00
Conclusion					

 Relevant manuscript source exists. Much of it unclear, including order of pages.

イロト イ団ト イヨト イヨト

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
					00
			0000	00000	
Conclusion					

- Relevant manuscript source exists. Much of it unclear, including order of pages.
- The "playing around with mathematics" involved projective geometry, but no need for major revision.

(日) (同) (日) (日)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
					00
Conclusion					

- Relevant manuscript source exists. Much of it unclear, including order of pages.
- The "playing around with mathematics" involved projective geometry, but no need for major revision.
- Dirac was right: he did not consider the Pauli equation and spin, although he did try two component wave functions.

(日) (同) (日) (日)

Pitt HPS

Tom Pashby

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
Conclusion					

- Relevant manuscript source exists. Much of it unclear, including order of pages.
- The "playing around with mathematics" involved projective geometry, but no need for major revision.
- Dirac was right: he did not consider the Pauli equation and spin, although he did try two component wave functions.
- The realization that α's were analogous to Pauli matrices led straight to the solution - no delay.

(日) (同) (日) (日)

	Quantum Algebra	Dirac's Testimony	Minkowski Space	Dirac Equation	Conclusion
00	00	00	00000	00000	00
Conclusion					

- Relevant manuscript source exists. Much of it unclear, including order of pages.
- The "playing around with mathematics" involved projective geometry, but no need for major revision.
- Dirac was right: he did not consider the Pauli equation and spin, although he did try two component wave functions.
- The realization that α's were analogous to Pauli matrices led straight to the solution - no delay.
- Dirac did consider 3 × 3 matrices (*contra* Mehra and Rechenberg, 2000).

(a)